OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 5713 Linear Systems Spring 2009 Midterm Exam #2

Choose any four out of five problems. Please specify which four listed below to be graded: 1)___; 2)__; 3)__; 4)__;

Name : _____

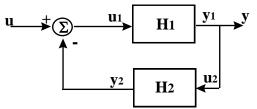
E-Mail Address:_____

Problem 1:

Find the matrices *A*, *B*, *C*, and *D* of state space representation for a composite configurations using two subsystems $\{A_i, B_i, C_i, D_i\}$, *i*=1, 2, connected in negative feedback, with

 $\{A_1, B_1, C_1, D_1\}$ in the forward loop and $\{A_2, B_2, C_2, D_2\}$ in the feedback loop. Assume subsystem 1 (denoted by H_1), $\{A_1, B_1, C_1, D_1\}$ has the transfer function $H_1(s) = \frac{s+5}{s^2+3s+6}$, and subsystem 2

(denoted by H_2), $\{A_2, B_2, C_2, D_2\}$ has the transfer function $H_2(s) = \frac{s+2}{s^2+4s+3}$.



Problem 2: Let

$$V^{\perp} = Span\left(\begin{bmatrix} 1 & -2 & 1 \\ -1 & 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & -1 \\ 2 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 & 0 \\ 1 & 3 & 0 \end{bmatrix}\right),$$

determine the original space, V. For $x = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 3 & 0 \end{bmatrix}$, find its direct sum representation of

 $x = x_1 \oplus x_2$, such that $x_1 \in V$, and $x_2 \in V^{\perp}$ (i.e., the direct sum of spaces V and V^{\perp} is the set of all 2×3 matrics with real coefficients).

Problem 3:

<i>A</i> =	1	2	3	4	5]
A =	2	3	4	1	2 0
	3	4	5	0	0

What are the rank and nullity of the above linear operator, A? And find the bases of the range spaces and the null spaces of the operator, A?

Problem 4:

Consider the subspace of \Re^4 consisting of all 4×1 column vector $x = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}^T$ with constraints $x_1 - 2x_2 + 3x_3 = 0$ and $-x_1 + 2x_2 - 3x_3 = 0$. Extend the following set to form a basis for THE subspace:

$$\begin{bmatrix} 1\\2\\1\\0\end{bmatrix}, \begin{bmatrix} -1\\-2\\-1\\0\end{bmatrix}.$$

Problem 5: Show that

Show that

$$\begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \text{ and } \begin{bmatrix} 3\\1\\-2 \end{bmatrix}, \begin{bmatrix} -1\\3\\-4 \end{bmatrix}$$

span the same subspace V of (\Re^3, \Re) .